Tuesday, May 31, 2011

Disposers


Disposers are another kitchen toy few of us live without in newer homes. They’re now installed in houses of all price levels. Oddly, they were not legal in New York City until August 1997, when concerns that zillions of pounds of ground-up orange peels, unfinished blintzes, and coffee grounds would clog the city’s plumbing gave way to consumer demand, a desire to decrease waste in landfills, and health hazards associated with uncollected trash bags full of food waste. Local laws in New York say that disposers can be installed only by licensed plumbers and electricians, who need permits to do the work. New Yorkers can contact the Department of Buildings at 60 Hudson Street to get the application for permits.
Disposers either are hard wired or are plugged into a receptacle under the sink with an appliance cord and plug. Some local codes require that a disposer be plug connected. A plug-in model is easier to work on because you can disconnect it from its power source quickly for servicing or replacement. This receptacle cannot be used for any other load, nor can it be part of a small-appliance circuit.
A disposer can have one of the following three types of “On/Off” switches:
  • A standard single-pole switch located above the counter or under the sink.
  • An integral switch built into the drain lid that, when twisted, activates the unit.
  • A flow switch installed in the cold-water line and activated when the drain lid is twisted.
With this type of switch, the disposer will not run until cold water is flowing into it. (This helps prevent grease buildup.) Disposers are even available for septic systems. In-Sinkerator makes a complete line of disposers. You can see the company’s products at www.insinkerator.com.

Wiring the Fridge


Some modern refrigerators draw a surprisingly small amount of current for all the work they do. Although the NEC figures 1,200 watts in its load calculations for a refrigerator, some only require half that amount. It’s apparent that it takes more electricity to produce heat than to maintain cold. The code allows a refrigerator to be supplied by its own 15- or 20-amp circuit, but it does not require a dedicated circuit. You can run a refrigerator off one of your small-appliance circuits, but many electricians recommend a dedicated circuit for the fridge.
Why? Remember, your small-appliance circuits are GFCI-protected. All it takes is one instance of nuisance tripping, and your refrigerator could be off for hours (or weeks, if you’re out of town). In addition to losing a lot of food, you’ll have to clean out some pretty rank stuff. A Sub Zero brand refrigerator (or other high-end refrigerator) requires a dedicated 15-amp circuit.

Small-Appliance Circuits and GFCIs


I already mentioned the danger of electricity around water and water pipes. An errant current will not hesitate to pass through you on its way to the ground through a water pipe. You also can get a shock or become electrocuted if you have contact with a receptacle and a range, a refrigerator, or a cooktop because they also are grounded. The code recognizes these dangers and steps in with GFCI requirements. Specifically, the code requires that all small-appliance circuits used on countertops be GFCI protected. This includes any receptacles serving kitchen islands. The usual installation calls for the first receptacle on the circuit (the feedthrough receptacle) to be a GFCI type, which in turn protects the additional receptacles down the line. It also is acceptable to install a GFCI circuit breaker, although this is more expensive than a GFCI receptacle.
The key word here is “countertop.” Other receptacles, such as one for the refrigerator or under the sink for a plug-in disposer, do not have to be GFCI protected. The underthe-sink receptacle cannot even be part of a small-appliance circuit; it must be its own dedicated circuit. Small-appliance receptacles must be installed so that any point on the back of the countertop is within 24 inches of a receptacle. Another way of saying this is that no two receptacles can be more than four feet apart. Every counter that’s wider than 12 inches must have at least one receptacle.

Saturday, April 30, 2011

Dedicated Circuits Everywhere


A kitchen is the home of the dedicated circuit. There are so many high-wattage devices here that too many on one circuit could cause it to trip; therefore, the code says these devices should be split up. Specifically, a kitchen should have individual dedicated circuits for the following loads:
  • All built-in appliances including the dishwasher, range, microwave oven, trash compactor, and disposer
  • Small, countertop appliances (food processors, toasters, and so on)
  • Lighting fixtures (cannot be part of the preceding circuits)
A minimum of two 20-amp small-appliance circuits must be installed to bring a kitchen up to code. These same circuits can supply power to receptacles in adjoining rooms including the breakfast nook and the dining room, but that’s as far as they can go. You can’t run your bedroom clock radio off a kitchen circuit. Beyond the minimum, which is all the code addresses, you or your electrician must consider how your kitchen will be used. An espresso machine, for example, needs its own dedicated circuit if it runs at 1,200 or 1,500 watts to avoid tripping the breaker every time the espresso machine is running and you decide to use the toaster. You would still be legal with your two small appliance circuits; you just wouldn’t be practical given your intended use of the kitchen. If you have a lot of small appliances and use them regularly, consider adding a third or even a fourth dedicated circuit.

Kitchen Wiring

If you’ve ever lived with an outdated kitchen, you’ll appreciate a modern one. Microwave ovens, food processors, and home-model espresso makers didn’t exist in the 1920s and 1930s. One or two receptacles were plenty for the portable appliances available at the time. Trying to make do with your parents’ or grandparents’ wiring at the end of this century is an exercise in frustration, not nostalgia. As you plan your kitchen upgrade, keep in mind any future remodeling. You might not be ready to replace cabinets, move walls, or upgrade appliances now, but you might in a few years. There’s no point in going all out with your electrical changes if you have to redo them later. By all means, add the necessary receptacles, but think twice before adding those fancy light fixtures. All it takes is a different cabinet configuration or the addition of an island to throw your lighting pattern askew. What if you move your electric range or refrigerator? If you run new circuits for them now in their present locations, you’ll have to run them again later. Stick with the necessary work for your safety and convenience now. Of course, if you don’t plan to do any extensive future kitchen remodeling, go ahead with a full electrical makeover now.

Kitchen and Electricity


We take our kitchens very seriously. In years past, a kitchen was hidden away and was seen as a more utilitarian room used simply for the storage and preparation of food. These days, we dine, mingle, read the paper, and socialize in this room, which often has a family room directly connected to it. It’s one of our home’s biggest overall energy consumers, and it demands a lot of wiring, devices, and appliances. Given the multitude of tasks and uses of a kitchen as well as the code requirements, you need to pay special attention to its circuits and the placement of light fixtures and receptacles. As previously discussed, you’ll want plenty of task and ambient lighting. You’ll also need a number of dedicated circuits for individual appliances. On top of that, some receptacles require GFCI protection and some do not. A well-designed kitchen is a joy to be in and inevitably will become the hub of your house. Virginia Woolf said, “One cannot think well, love well, sleep well, if one has not dined well.” I certainly won’t claim that meeting the National Electrical Code in your kitchen will improve all these areas of your life, especially if you live mainly on microwaved hamburgers, but at least you’ll get a better look at what you’re eating.

Thursday, March 31, 2011

Keeping the Inspections in Mind


An inspector will scrutinize your work more closely than an electrician’s work. Make sure your cable is pulled tightly through wall and floor spaces and is stapled according to code requirements, which specify insulated staples or straps …

➤ Not more than 12 inches from a box or fitting.
➤ Not more than 41⁄2 feet from each other when a cable is running along a stud or joist.
➤ Installed without damaging or denting the cable in any way.

You must have at least six inches of cable or conductors in each box from the point of entry into the box. Once attached to a device, the conductors should be neatly tucked inside with the hot and neutral conductors separated from each other. Overall neatness and professionalism go a long way toward satisfying an electrical inspector.